思维训练导引行程问题(一)

网上有关“思维训练导引行程问题(一)”话题很是火热,小编也是针对思维训练导引行程问题(一)寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

华数思维训练导引 四年级下 行程问题(一)

 1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。问他走后一半路程用了多少分钟?

 分析:解法1、全程的平均速度是每分钟(80+70)/2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000/80=37.5分钟,后一半路程时间是80-37.5=42.5分钟

 解法2:设走一半路程时间是x分钟,则80*x+70*x=6*1000,解方程得:x=40分钟

 因为80*40=3200米,大于一半路程3000米,所以走前一半路程速度都是80米,时间是3000/80=37.5分钟,后一半路程时间是40+(40-37.5)=42.5分钟

 答:他走后一半路程用了42.5分钟。

 2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。小明上学走两条路所用的时间一样多。已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?

 分析:解法1:设路程为180,则上坡和下坡均是90。设走平路的速度是2,则下坡速度是3。走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。

解法2:因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75

 解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/2*路程/1.5=路程/1,得:上坡速度=0.75

 答:上坡的速度是平路的0.75倍。

 3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。那么甲、乙两地之间的距离是多少千米?

 分析:解法1,第二小时比第一小时多走6千米,说明逆水走1小时还差6/2=3千米没到乙地。顺水走1小时比逆水多走8千米,说明逆水走3千米与顺水走8-3=5千米时间相同,这段时间里的路程差是5-3=2千米,等于1小时路程差的1/4,所以顺水速度是每小时5*4=20千米(或者说逆水速度是3*4=12千米)。甲、乙两地距离是12*1+3=15千米

 解法2,顺水每小时比逆水多行驶8千米,实际第二小时比第一小时多行驶6千米,顺水行驶时间=6/8=3/4小时,逆水行驶时间=2-3/4=5/4,顺水速度:逆水速度=5/4:3/4=5:3,顺水速度=8*5/(5-3)=20千米/小时,两地距离=20*3/4=15千米。

 答:甲、乙两地距离之间的距离是15千米。

 4、一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟。有一个人从乙站出发沿电车线路骑车前往甲站。他出发的时候,恰好有一辆电车到达乙站。在路上他又遇到了10辆迎面开来的电车。到达甲站时,恰好又有一辆电车从甲站开出。问他从乙站到甲站用了多少分钟?

 分析:骑车人一共看到12辆车,他出发时看到的是15分钟前发的车,此时第4辆车正从甲发出。骑车中,甲站发出第4到第12辆车,共9辆,有8个5分钟的间隔,时间是5*8=40(分钟)。

 答:他从乙站到甲站用了40分钟。

 5、甲、乙两人在河中游泳,先后从某处出发,以同一速度向同一方向游进。现在甲位于乙的前方,乙距起点20米,当乙游到甲现在的位置时,甲将游离起点98米。问:甲现在离起点多少米?

 分析:甲、乙速度相同,当乙游到甲现在的位置时,甲也又游过相同距离,两人各游了(98-20)/2=39(米),甲现在位置:39+20=59(米)

 答:甲现在离起点59米。

 6、甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。问:东西两地的距离是多少千米?

 分析:解法1:甲比乙1小时多走8千米,一共多走32*2=64千米,用了64/8=8小时,所以距离是8*(56+48)=832(千米)

 解法2:设东西两地距离的一半是X千米,则有:48*(X+32)=56*(X-32),解得X=416,距离是2*416=832(千米)

 解法3:甲乙速度比=56:48=7:6,相遇时,甲比乙多行=(7-6)/(7+6)=1/13,两地距离=2*32/(1/13)=832千米。

 答:东西两地间的距离是832千米。

 7、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:骑车人每小时行驶多少千米?

 分析:老师速度=4+1.2=5.2(千米),与李相遇时间是老师出发后(20.4-4*0.5)/(4+5.2)=2(小时),相遇地点距离学校4*(0.5+2)=10(千米),所以骑车人速度=10/(2+0.5-2)=20(千米)

 答:骑车人每小时行驶20千米。

 8、快车和慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇。已知慢车从乙地到甲地用12.5小时,慢车到甲地停留0.5小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇需要多少时间?

 分析:解法1,快车5小时行过的距离是慢车12.5-5=7.5小时行的距离,慢车速度/快车速度=5/7.5=2/3。两车行1个单程用5小时,如果不停,再次相遇需要5*2=10小时,如果两车都停0.5小时,则需要10.5小时再次相遇。快车多停30分钟,这段路程快车与慢车一起走,需要30/(1+2/3)=18(分钟)所以10.5小时+18分钟=10小时48分钟

 解法2:回程慢车比快车多开半小时,这半小时慢车走了0.5/12.5=1/25全程,两车合起来少开1/25,节省时间=5*1/25=0.2小时,所以,从第一次相遇到第二次相遇需要=5*2+1-0.2=10.8小时。

 答:两车从第一次相遇到第二次相遇需要10小时48分钟。

 9、某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来校作报告,往返需用1小时。这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达。问:汽车速度是劳模步行速度的几倍?

 解:汽车走单程需要60/2=30分钟,实际走了40/2=20分钟的路程,说明相遇时间是2:20,2点20分相遇时,劳模走了60+20=80分钟,这段距离汽车要走30-20=10分钟,所以车速/劳模速度=80/10=8

 答:汽车速度是劳模步行速度的8倍。

 10、已知甲的步行的速度是乙的1.4倍。甲、乙两人分别由A,B两地同时出发。如果相向而行,0.5小时后相遇;如果他们同向而行,那么甲追上乙需要多少小时?

 分析:两人相向而行,路程之和是AB,AB=速度和*0.5;同向而行,路程之差是AB,AB=速度差*追及时间。速度和=1.4+1=2.4,速度差=1.4-1=0.4。所以:追及时间=速度和/速度差*0.5=2.4/0.4*0.5=3(小时)

 答:甲追上乙需要3小时。

11、猎狗发现在离它10米的前方有一只奔跑着的兔子,马上紧追上去。兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。问狗追上兔时,共跑了多少米路程?

 分析:狗跑2步时间里兔跑3步,则狗跑6步时间里兔跑9步,兔走了狗5步的距离,距离缩小1步。狗速=6*速度差,路程=10*6=60(米)

 答:狗追上兔时,共跑了60米。

 12、张、李两人骑车同进从甲地出发,向同一方向行进。张的速度比李的速度每小时快4千米,张比李早到20分钟通过途中乙地。当李到达乙地时,张又前进了8千米。那么甲、乙两地之间的距离是多少千米?

 分析:解法1,张速度每小时8/(20/60)=24(千米),李速度每小时24-4=20(千米),张到乙时超过李距离是20*(20/60)=20/3(千米)所以甲乙距离=24*(20/3/4)=40(千米)

 解法2:张比李每小时快4千米,现共多前进了8千米,即共骑了8/4=2小时,张从甲到乙用了2*60-20=100分钟,所以甲乙两地距离=(100/20)*8=40千米。

 答:甲、乙两地之间的距离是40千米。

 13、上午8时8分,小明骑自行车从家里出发;8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他;然后爸爸立刻回家,到家后又立刻回头去追小明,再追上他的时候,离家恰好是8千米。问这时是几时几分?

 分析:爸爸第一次追上小明离家4千米,如果等8分钟,再追上时应该离家8千米,说明爸爸8分钟行8千米,爸爸一共行了8+8=16分钟,时间是8点8分+8分+16分=8点32分。

 答:这时8点32分。

 14、龟兔进行10000米赛跑,兔子的速度是乌龟的速度的5倍。当它们从起点一起出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时乌龟已经它5000米;兔子奋起直追,但乌龟到达终点时,兔子仍落后100米。那么兔子睡觉期间,乌龟跑了多少米?

 分析:兔子跑了10000-100=9900米,这段时间里乌龟跑了9900*1/5=1980米,兔子睡觉时乌龟跑了10000-1980=8020米

 答:兔子睡觉期间乌龟跑了8020米。

 15、一辆大轿车与一辆小轿车都从甲地驶往乙地。大轿车的速度是小轿车速度的0.8倍。已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟后,才继续驶往乙地;在小轿车出发后中途没有停,直接驶往乙地,最后小轿车却比大轿车早4分钟到达乙地。又知大轿车是上午10时从甲地出发的,求小轿车追上大轿车的时间。

 分析:解法1,大车如果中间不停车,要比小车多费17-5+4=16分钟,大车用的时间与小车用的时间之比是速度比的倒数,即1/0.8=5/4,所以大车行驶时间是16/(5-4)*5=80分钟,小车行驶时间是80-16=64分钟,走到中间分别用了40和32分钟。大车10点出发,到中间点是10点40分,离开中点是10点45分,到达终点是11点25分。小车10点17分出发,到中间点是10点49分,比大车晚4分;到终点是11点21分,比大车早4分。所以小车追上大车的时间是在从中间点到终点之间的正中间,11点5分。

 解法2:大轿车的速度是小轿车速度的0.8倍,大轿车的用时是小轿车用时的1/0.8=1.25倍,大轿车比小轿车多用时17-5+4=16分钟,大轿车行驶时间=16*(1.25/0.25)=80分钟,小轿车行驶时间=16/(0.25)=64分钟,小轿车比大轿车实际晚开17-5=12分钟,追上需要=12*0.8/(1-0.8)=48分钟,48+17=65分=1小时5分,所以,小轿车追上大轿车的时间是11时5分

 答:小轿车追上大轿车的时间是11点5分。

#小学奥数# 导语奥数是奥林匹克数学竞赛的简称。1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。以下是 考 网整理的《小学生奥数思维训练及答案》相关资料,希望帮助到您。

1.小学生奥数思维训练及答案

 1、小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的`平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?

 解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

 2、妈妈每4天要去一次副食商店,每5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)

 解:每20天去9次,9÷20×7=3.15(次)。

 3、乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。

 解:以甲数为7份,则乙、丙两数共13×2=26(份)

 所以甲乙丙的平均数是(26+7)/3=11(份)

 因此甲乙丙三数的平均数与甲数之比是11:7。 

2.小学生奥数思维训练及答案

 1、王医生刚刚申请开了一家小药店,手头只有一架天平,一只5克和一只30克的砝码。一天,店里来了一位顾客,要购买100克某贵重药粉。如果用30克砝码称三次,再用5克砝码称两次,共五次称出100克药粉。可是,药店生意繁忙,顾客又希望越快越好。称一次无论如何也无法称出100克。那么,你能想一个又快又好的办法吗?

 答案将5克和30克砝码放在天平一端,先称出35克药粉,再将这35克药粉和30克砝码同放在天平一端,又可称出65克药粉,这样就总共称出药粉:35+65=100(克)

 五、父子赛跑:老王带着儿子小王沿着直径100码的圆形跑道背向行走进行比赛。它们从同一地点出发,但起先老王根本不动,直至小王完成了全程的八分之一以后才开始。老王低估了儿子的竞走能力,因此它慢吞吞地闲庭信步,慢慢走着,直至它在途中碰到了迎面而来的小王,这时老王已走完全程的六分之一。

 2、请问:为了赢得这场比赛,老王必须把它的速度提高到以前速度的多少倍?

 答案:圆形跑道的直径同问题无关。当它们相遇时,老王已走完全程的1∕6,而在老王行走的这段时间内,小王走了全程的16∕4,因此小王的行走速度是老王速度的17∕4倍。老王还有5∕6的路程要跑,而小王只有1∕6的路程了。所以老王的速度必须至少是小王的5倍。

3.小学生奥数思维训练及答案

 1、赛跑问题

 甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。问:A、B相距多少米?

 解答:乙跑最后30米时,丙跑了(70-45)=25米,所以乙、丙的速度比是30:25=6:5。因为乙到终点时比丙多跑了45米,所以A、B相距

 45÷(1-5/6)=270米。

 这道题主要考察路程与速度等比例关系,从而可以从路程求速度,也可以从速度反求路程。

 2、取款问题

 某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半少100元,这时他的存折卡上还剩1350元。问:他存折卡上原有多少钱?

 解答:我们可以倒过来推,第二次取了余下一半少100元,可知“余下的一半多100元”是1350,从而“余下的一半”是1350-100=1250(元)

 余下的钱是:1250×2=2500(元)

 同样的道理,第一次去了余下一半多50元,可知“余下一半少50元”是2500,从而“余下一半”是2500+50=2550(元)

 存折卡上原有2550×2=5100(元)

 这道题主要是运用的还原的思想。还原问题的一般特点是已知对某个数按照一定的顺序进行四则运算,我们通常按照与运算或增减变化相反的顺序,进行相应的逆运算。

 3、三色球问题

 有红、黄、白三种颜色的小球各10个,混合放在一个布袋中,一次至少摸出______个,才能保证有5个小球是同色的

 解答:根据最不利原则,至少需要摸出4×3+1=13个。

4.小学生奥数思维训练及答案

 1、甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。问:甲、乙原订每天自学的时间是多少分钟?

 分析:甲每天增加自学时间半小时,乙每天减少自学时间半小时,甲比乙多自学一个小时,乙自学6天的时间仅相等于甲自学一天的时间,甲是乙的6倍,差倍问题。

 解:乙每天减少半小时后的自学时间=1/(6-1)=1/5小时=12分钟,乙原计划每天自学时间=30+12=42分钟,甲原计划每天自学时间=12*6-30=42分钟。

 2、一大块金帝牌巧克力可以分成若干大小一样的正方形小块。小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。那么他们开始吃第1小块的时间是几时几分?

 分析:小明每隔20分钟吃1小块,小强每隔30分钟吃1小块,小强比小明多间隔10分钟,小明14时40分吃最后1小方块,小强18时吃最后1小方块,小强比小明晚3小时20分,说明在吃最后一块前面共有(3*60+20)/10=20个间隔,即已经吃了20块。那么,20*20=400分钟=6小时40分钟,14时40分-6小时40分=8时。

 解:18时-14时40分=3小时20分=3*60+20=200分钟,已经吃的块数=200/(30-20)=20块,小明吃20块用时20*20=400分钟=6小时40分钟,开始吃第一块的时间为14时40分-6小时40分=8时。

5.小学生奥数思维训练及答案

 1.?在□里填上不同的质数,使等式成立。

 □+□=□×□=□-□

 分析与解答?如果两个质数的和(或差)是奇数,那么必须是奇数与偶数的和(或差),而偶质数只有2,则填写重复。所以这个和只能是偶数。一个因数是2.可以列出100以内的质数来选择列举。

 3+7=2×5=23-133+11=2×7=37-23

 3+7=2×5=71-613+19=2×11=29-7?……

 2.甲乙两种奥运会纪念品的单价相差0.6元,用36元钱买乙种纪念品比买甲种纪念品刚好可以多买2个,则甲的单价是多少元,乙的单价是多少元?

 分析与解答?以角做单位,则

 360=甲的单价×甲的数量=(甲的单价-6)×(甲的数量+2)。

 360=1×360=2×180=…=10×36=12×30=15×24=18×20

 观察知道,甲的单价是36角,即3.6元,乙的单价是3元。

 3.一个长方体的玻璃缸,长8分米,宽6分米,高4分米,水深2.8分米,如果投入一块棱长为4分米的正方体铁块,缸里的水溢出多少升?

 分析与解答?铁块的体积4×4×4=64(立方分米)

 水的体积?8×6×2.8=134.4?(立方分米)

 玻璃缸的容积8×6×4=192?(立方分米)

 注意到铁块的高度与玻璃缸的高度相同,而水的体积与铁块的体积的和比玻璃缸的容积大,则溢出水的体积是?64+134.4-192=6.4?(立方分米)=6.4(升)

关于“思维训练导引行程问题(一)”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(0)
上一篇 2024年03月26日
下一篇 2024年03月26日

相关推荐