网上有关“如何看待数学解题的方法多样性”话题很是火热,小编也是针对如何看待数学解题的方法多样性寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
您好:手机麻将有挂是真的吗这款游戏可以开挂,确实是有挂的,咨询加微信【】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的
1.手机麻将有挂是真的吗这款游戏可以开挂,确实是有挂的,通过添加客服微信
2.咨询软件加微信【】在"设置DD功能DD微信手麻工具"里.点击"开启".
3.打开工具.在"设置DD新消息提醒"里.前两个选项"设置"和"连接软件"均勾选"开启"(好多人就是这一步忘记做了)
4.打开某一个微信组.点击右上角.往下拉."消息免打扰"选项.勾选"关闭"(也就是要把"群消息的提示保持在开启"的状态.这样才能触系统发底层接口)
“解题方法多样化”在数学教学中有着重要的指导作用,新版的《数学课程标准》中提倡全新的教学理念,其中“问题解决策略多样化”就是对学生解决问题方式的诠释,提倡多策略解决问题旨在让学生开拓数学思维、优化思想、创新研究,让教师实施解题方法多样化教学,老师不要“死教学”,学生不能“读死书”,将重视结果教学转变成重视过程教学。“解题方法多样化”将重新构建师生关系,老师评价学生的准绳变得更加宽泛,学生分析问题、解决问题的形式多样化,使得教学过程中的理念在提升,真正让数学课堂变得高效,很准确地落实课堂教学。
下面我就从数与代数、图形与几何两方面对“解题方法多样化”作浅显的探索。
一、 数与代数方面落实“解题方法多样化”
我经常问自己:数学源自于哪里?为什么要学数学?听过很多名家的讲座,看过很多名师上课,我觉得别把数学看得深不可测,尤其是小学数学,就是来自于生活的,并且为了解决生活中的问题我们才去学习数学。所以,小学生们也是有各自不同的知识经验和生活积累的。正是有了这样那样的经验,学生们在解决问题的过程中都会有自己对问题的理解,并在此基础上形成自己解决问题的策略。因此,教师在教学中就要给学生提供自主探索的机会,引导学生去动手实践、自主探索,鼓励学生从不同的角度、不同的途径去观察、猜测、验证、从而解决问题,达到数学课堂的高效。
教学实例1教学《一个数乘一位数的口算乘法》时以6捆小棒引出课题,问学生:如何计算小棒的总数是多少?在一阵独立思考之后,组内进行交流,最后学生给出了这样一些方法:
① 数一数:
生1:我是一根一根地数,共60根。
生2:你那样数太慢了,我是十根十根数的,10根,20根,30根……一共60根。
生3:我是二十根二十根数的,20根,40根,60根,一共60根。
②加一加:10+10+10+10+10+10=60(根)
③乘一乘:
生1:10×6=60(根)
生2:20×3=60(根)师问:这个20表示什么意思?3又代表什么呢?
生3:30×2=60(根)师问:你来说说算式中的30和2分别表示什么意思?
老师在黑板上把学生的各种想法一一呈现,让更多的学生看到不同的方法解决这道题,开拓了学生的数学思维。在这三种方法的牵引下,学生会思考了,可以从加法、乘法两方面去解决这样的数学问题,当然老师会问:这三种方法你认为哪种方法最简便?这也是一个方法最优化的体现。
接下来,老师可以再出示一道问题:在6捆小棒的外面再加上6根小棒,问问现在有几根?让学生思考。仍然是运用多种方法解决。其实这个问题就是在刚才三种方法的基础上再加上6根小棒就可以了,又巩固了一遍本课的重点内容,使得学生学习知识扎实,达到高效课堂。
教学实例2教学《列方程解应用题》 时有这样一道题:红星小学组织学生给希望小学捐书,六年一班学生捐书78本,比一年一班的2倍还多12本,一年一班捐书多少本?老师要求学生用不同的方法解答本例题 。学生在本上计算,老师巡视,指导学习有困难的学生。学生汇报自己的想法,老师适时板书:
法一:算数法 (78-12)÷2
法二:用方程计算 解:设一年一班捐书x本,列方程如下:
2x+12=78
教师引导学生对这两种方法进行比较,让学生说说两种方法的相同点和不同点分析,在用方程解决问题的时候应注意什么?给学生充分地表达自己想法的时间。
上述两个教学实例,就是教学中最常见的例子。老师每抛出一个数学问题,都是又学生自主探究,形成了多种解题方式的呈现。如果给这两个案例细分的话,前者是算法多样化、后者则是一题多解。算法多样化所采用的教学策略主要是使学生能进行自主、合作、探究性的学习,而一题多解的教学策略主要是鼓励学生多角度思考。
无论是算法多样化还是一题多解,都是在学生灵活思维的牵引下,对于一个问题的多种解决方法,至于课堂上如果学生还有更多的解题思路,老师要鼓励学生表达,给学生展示的机会。正是由于每节课上孩子的生成性问题的不断涌现,才会使我们的课堂活动充满生机。学生思维活跃了,老师的情绪也会被带动,教者情绪高涨,学者自会信其理。
二、 图形与几何方面落实“解题方法多样化”
北师大版教材在图形与几何部分的编排特点就是从学生实际生活出发,用贴近学生生活的和实例走进学生心理,浅显的文字表述以及鲜亮的颜色都是促使学生快速找寻数学信息的因素。
其实数学学习的最终目的就是让学生运用所学的知识去解决生活中的问题,让学生在面对实际问题时,能主动尝试着从数学的角度、根据已有的知识经验寻求解决问题的策略,提高学生解决问题的意识与能力。多年的数学教学经验使我明白,最有效的方法是让学生有机会亲身实践。教学中,教师应该结合教学内容,设计现实的、富有挑战性的问题,让学生寻求解决方案。
教学实例3教学完《长、正方体的体积》后,教师在之后的一节练习课上让学生带来长、正方体的物体或容器,以及小石块、土豆等不规则形状的物体,让学生动手试一试,能测量并计算出哪些物体的体积或容积。在此基础上还可以向学生提出一个富有挑战性的问题,你能利用正方体的容器、水和直尺,想办法测量小石块的体积吗?学生在组内进行了激烈的谈论与探索,老师深入到学生的讨论中,指导启发学生运用更快更好更多的办法解决这类题。学生代表在汇报的时候有许多精彩的表现:
生1:我们组讨论的方法是这样的:把正方体容器装满水,量出水的高度。
师:为什么要量出水的高度?
生1:此时水的高度实际上就是正方形的棱长,只有知道水的高度才会计算出小石块的体积。然后把小石块放进这个容器中,水就会马上溢出来,这溢出来的水的体积就是小石块的体积。
师:大家觉得这个方法怎么样?有什么要说的吗?
其他学生表达自己的想法。
生2:这个溢出来的水的体积到底是多少呢?怎么计算了?我认为还要把溢出来的水放进跟这个正方体一样的容器中,再量出这个水的高度,计算出水的体积,这个水的体积就是小石块的体积了。
师:对了!你说的非常精彩!这个方法的计算过程就是你们两个人的说法捏到一起去,就是解决问题的方法了。大家这么喜欢动脑筋解决生活中的问题,在你们充满智慧的表达中老师简俨然看到了一个个小科学家的诞生! 那么其他小组还有背别的方法吗?
生3:我们组是这样做的:把正方体容器装一点水,不用装满,然后量出水的高度。再把小石块放进去,这时水面就上升了,然后再量出水的高度,这时上升的水的体积就是小石块的体积。最后用“正方体的底面积×上升了的水的高度”就可以计算出小石块的体积了。
师:大家给他鼓鼓掌吧!这第二种方法大家听懂了吗?谁来说说你对于这两种计算方法的看法?
在交流的过程中教师对每一种方法都表现出极大的兴趣,给予了充分的肯定。最后请学生自己谈谈对这些方法的感受:更喜欢哪一种方法,为什么喜欢这种方法?大部分学生已认识到第二种最简便,因为它的思路很清晰,操作起来也不是很复杂。教师再小结。
在解决图形与几何方面的习题时,经常会出现这个教学实例中的现象,学生要通过自己的研究,动手操作,实际演练,汇报交流,总结出解决问题的方法。这样的呈现方式气氛热烈活跃,学生踊跃参与,大部分学生积极地争取机会发言,通过交流来发现各种不同算法之间的区别和本质联系。
以上三个教学实例中,老师都注重方法的多样性指导,而非总结出哪种方法好,哪种方法不好,这也是很多老师疑惑的地方,就是说:到底用不用告诉学生哪种方法刚好?其实我认为:只要学生能掌握顺手的方法就可以了,不用非得说必须用哪种方法解决。
教师在课堂上让学生通过自主探究,合作交流,研究出“不规则物体体积”的基本方法。这样的算法使学生理解、掌握,知其然而知其所以然。因此对于此类的特殊题型,教师要合理把握教学中生成的问题,切忌急于给学生一种正确的方法,而是在学生不断的练习,交流,体验中引发思维震动,真正理解和掌握最适合自己的方法。
教学中对于“解决方法多样化”是有很多研究价值的,课堂的时效性也不是空穴来风,教师要抓住课堂的生成性问题,灵活应对各种意料之外的问题。当学生的回答贴合课堂的节奏,老师就要及时引导,尊重学生的主体认知,学生的潜力很大,很喜欢用别人没用过的方法解决问题,这就是孩子们特有的对新鲜事物的探究欲望。老师在课堂上要给足学生探究的时间,让孩子们在小组内尽量多交流,迸发出思维的火花来,这样我们的数学课堂就活跃了,这样做也是符合《新课标》的理念:“尊重学生的个性特点,关注学生的思维发展”,真正做到“以学生为本”。但是千万不可以为了“方法多样化”而方法多样化,一味的追求多种方法,这样也是不对的。机械的罗列出一大堆方法,如果老师不适时总结和归纳,找寻它们的共同点,提升思维,创建高效课堂,那么再多的方法罗列也是徒劳,这样只会让我们的课堂内容看起来太满太多,却抓不住重点,反而起了“反作用”。所以,老师要把握好这个度,真正让“解决方法多样化”对教学有指导意义,而不是一件“浮夸的外衣”。
小学数学解决问题的策略有哪些
在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。以下是我为大家精心整理的“四年级下册数学《鸡兔同笼》教案”,欢迎大家阅读,供您参考。更多详请关注!
四年级下册数学《鸡兔同笼》教案(一)教学目标:
1、了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、解决问题,初步形成解决此类问题的一般性策略。
2、通过自主探索,合作交流,培养学生的合作意识和逻辑推理能力,体会解题策略的多样性,渗透化繁为简的思想。
3、感受古代数学问题的趣味性,提高学习数学的兴趣。 教学重点:理解掌握用不同的方法解决问题的不同思路和方法。 教学难点:运用不同的方法解决实际问题。 教具准备:多媒体课件、学习单等。 教学过程:
一、创设情境、揭示课题
1、师:同学们,今天老师很高兴能跟大家一起度过一堂生动有趣的课。同学们有没有信心能上好这堂课?真棒!请同学们带着你们的信心和热情跟老师一起有进数学广角。我们一起来学习一道我国古代非常有名的数学趣题,“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”(PPT投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头。从下面数,有94条脚。鸡和兔各有几只?)(PPT展示今意。)
2、这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。那么这个流传了上千年的问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。老师再问一次大家:你们有没有信心把这节课的内容学好?
二、合作探究、学习新知
活动一:探究用猜测列表法解决“鸡兔同笼”问题。
为了便于研究,我们可以先从简单的问题入手,来探讨解决这类问题好吗?出示例1
1、师:请大家读题。思考:从上面数,有8个头,从下面数,有26只脚,分别是什么意思?所求问题是什么?
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只? 师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。
2、列表法
(1)猜想
要求鸡和兔各有几只,咱们不妨猜一猜,好吗?(学生猜)
(2)验证:
到底谁猜对了呢?我们来验证一下。解决问题要有理有据,不能随意猜。我们应该抓住什么样的条件来验证我们的猜测是否正确?首先要知道鸡和兔一共有8只,其次鸡的腿和兔的腿一共有26只,所以我们必须要把鸡的腿和兔的腿加起来看看等不等于26。这两个条件必须同时满足才是正确答案。
现在请同学们拿出你们的表格把你们的猜测的数据按顺序填到表格中并找到正确答案。学生独立完成表格,之后交流完成情况,出示大屏幕的表格中。
(像这样把我们的猜测按一定的顺序列成表格,这种方法叫列表法)。观察这个表格,你找到答案了吗?答案是怎样的。
活动二:探究用假设法解决“鸡兔同笼”问题。
师:列表的方法可以解决鸡兔同笼问题,但是如果数据很大,会发生什么情况?(繁琐)。有没有其他方法可以解决?请同学们四人一小组探讨一下还有没有其他方法可以解决。
设全都是鸡,每只鸡有两只脚 2×8=16(条)8只鸡共长几条脚? 26-16=10(条)表示什么?所有兔子少的脚 4-2=2(条)2表示什么?每只兔子少的脚
10÷2=5(只)兔表示10条脚,每只鸡上添2只脚变成兔子,所以共有5只鸡变成了兔子,因此兔子有5只8-5=3(只)鸡表示总数减兔数等于鸡数
可能还有些同学有点迷糊,我们用画图法直观理解一下。?
(1)请画8个圆表示鸡,每只鸡2只腿,一共有16只脚。
(2)还差10只脚,每只鸡再加两只脚变成兔子,共有5只鸡变成5只兔子。
(3)最后剩下的3只就是鸡。
现在大家清楚了吗?在引导学生回顾一遍。先怎么想?假设全是鸡,用总脚数减去鸡的脚数求出它们
的相差数是10,再用相差的数除以每只鸡相差的2只脚,就得到了兔的只数,最后用总只数减去兔的只数就是实际鸡的只数。这种方法好吗?给这种方法起个名字,叫什么好呢?假设法。
②:如果假设全是兔,你们会解吗?好这个方法就留给你们课后完成。
小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)?
发散思考、加深理解:
现在我们能用上面的方法解决古人流传下来的问题了吗? 出示:鸡兔同笼,有35个头,94只脚,鸡兔各有几只? 学生独立自主完成
小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。
三、巩固练习
课本105页“做一做”的1、2题。
四、课堂总结
师:通过今天的学习,你有哪些收获?
五、作业布置
课本106页练习二十四第一题
四年级下册数学《鸡兔同笼》教案(二)教学目标:
1、知识与技能
初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。
2、过程与方法
通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。
3、情感、态度与价值观
培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。
教学重点:用画图法和列表法解决相关的实际问题。
教学难点:体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
教学准备:课件。
教学流程:
(一)问题引入,揭示课题
师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有雉(野鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
问:这段话是什么意思?谁能说说?(生试说)
师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头。从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。(板书课题:鸡兔同笼问题)
(二)主动探究、合作交流、学习新知
师:说明为了研究方便,我们先将题目的条件做一个简化。
(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?
师:同学们先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)
学生初步交流,教师提炼:可以用画图法、列表法、假设的方法。
师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。
学生思考、分析、探索,接下来小组讨论、交流。
小组活动充分后进入小组汇报、集体交流阶段。
师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?
学生汇报探究的方法和结论:
1、 画图法:
给每只动物先画上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。一次增加2条腿,一只鸡就变成了一只兔,要把10条画完,要把5只鸡变成兔。
总结:画图的方法非常便于观察、非常容易理解。
2、列表法:(展示学生所列表格)
学生说明列表的方法及步骤:
学生汇报:我们先假设有8只鸡这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。
师:同学们的探索精神和方法都很好,都能用自己的方法成功地解决“鸡兔同笼问题”。不过上面的两种方法,老师还是觉得比较麻烦,又是画图,又是列表的,有没有更方便简洁的方法来解决这个问题?
3、假设法:(随学生能否出现此种情况作为机动出示)
教师引导:观察上面的表格我们发现。如果8只都是鸡,则一共只有16条腿这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。一共多了10条腿,于是兔就有10÷2=5(只),所以我们还可以这样去想:
板书:方法一:假设8只都是鸡,那么兔有:
(26-8×2)÷(4-2)=5(只)
鸡有8-5=3(只)
同样如果8只都是兔,则一共只有32条腿这样就比26条腿多6条腿,这是因为实际每只鸡比每只兔子少2条腿。一共多了6条腿,于是鸡就有6÷2=3(只),所以我们还可以这样去想:
板书:方法二:假设8只都是兔,那么鸡有:
(4×8-26)÷(4-2)=3(只)
兔有8-3=5(只)
小结方法:刚才我们用这么多的方法解决了鸡兔同笼问题,你最喜欢哪一种方法,说说你的理由。
现在我们重新总结一下这些方法:数目比较小时,用画图和列表的方法比较快,数目比较大时,用假设法比较好。
(三)解决实际问题、课堂延伸
1.尝试解答课前提出的古代《孙子算经》中记载的鸡兔同笼问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
看看我国古人是怎么解这个题的。
2、自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有多少辆?
(四)课堂小结
通过今天的学习,你有哪些收获?
师总结:这节课,我们一起用画图法、列表法和假设法解决了我国古代著名的“鸡兔同笼”问题。其实在1500年以来,我们中国历代的数学家都在不断的研究和探索这个问题,也得出了许多的解决“鸡兔同笼”问题的方法,而且从中得到了很多的数学思想。希望同学们在今后的学习中,善于思考,善于发现,善于总结方法。
常用的解决问题的策略有哪些?
小学数学解决问题的策略有以下几个步骤:
1. 阅读理解题目
首先要仔细阅读题目,理解题意,找出问题的关键点和要求,确定所给的数据和需要求解的未知量。
2. 列出方程式
根据问题的描述和要求,列出方程式,尽量简化表达式,定义正确的符号,以便更好地表示关系。
3. 解方程式
使用基本的数学运算和计算技巧,解决方程式,逐步求解未知量,检查答案是否与问题所要求的一致。
4. 回答问题
将求得的解答应用到原题目上,判断结果是否符合要求,是否能够解释和说明问题的全部内容。
5. 检查结果
最后一步是检查答案是否正确,如果有时间,可以反复检查解答过程和结果,发现错误并改正,以确保结果正确。
这些策略在小学数学中是非常重要的,能够帮助学生系统性地解决数学问题。当学生掌握这些策略,并能够熟练运用时,就能够更自信地面对数学问题,并取得更好的成绩。
解决问题策略的学习,和解决问题的学习是统一的。在小学数学学习中,往往通过例题的学习来使学生掌握解决问题的策略,又通过练习题的应用,使学生掌握解决问题的策略。可以说解决问题的策略是数学例题学习的核心,作为一名教师要知道小学数学中常用的解决问题的策略有哪些?下面尝试列举一二。
一、画图的策略。
由于小学生认知水平的局限,他们对符号、运算性质的推理可能会发生困难,在解决问题时,引导他们自己在纸上涂一涂、画一画,可以拓展解题思路,找到解题关键,领悟解题方法。因此,画图应该是学生们应该掌握的一种基本的解题策略,尤其用算术法解题的小学生来说,非常重要。
为什么说画图的策略很重要呢?主要是因为这种方法直观、形象,能够帮助学生将抽象的数学问题具体化,复杂的问题简单化。可以弥补小学生思维能力的不足,逐步提升其思维水平。
常用的画图方法有:直观图、线段图、示意图、思维导图、集合图等。
二、推理的策略。
数学教学的价值追求就是学生思维的发展,数学教育的最高境界就是培养人的思维方式。而推理是数学的基本思维方法,也是学生数学学习中经常使用的思维方式。
推理包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比得到某些结果。演绎推理是从定义、公式、法则等出发,进行证明与计算。
在小学数学问题解决的过程中,更多采用合情推理。比如常用的假设法、设数法等。以往数学教学中常说的?分析法?与?综合法?,都是简单的推理。
三、尝试调整的策略。
尝试的策略,简单地说就是你不知道从哪儿开始的时候,可以先猜一猜。猜测的结果如果合理但不合乎要求,再把结果放到问题中去考虑,进一步调整、寻找答案。
小学数学学习中常用的表格法、枚举法、筛选法等,其实就是尝试调整的策略。比如我们在解决鸡兔同笼问题时,用列举鸡和兔的只数算对应腿数,就是这种策略。
四、模拟操作的策略。
模拟操作是通过探索性的动手操作活动来模拟问题情境,从而获得解决问题的一种策略。通过这种策略的训练,可以培养学生的创造性思维。
比如,在解决火车过桥问题时,让学生将文具盒当做桥,将自己用的笔当做火车,自己模拟火车过桥。通过类似问题的模拟,把这种不清晰的数量关系很直观地表现出来,这种问题就容易理解解决了。
当然,解决问题的策略还有很多,在解决一个问题时,往往是多种策略的综合运用。我们在解决问题时,要重视渗透解决问题的策略,进而逐步提升学生解决问题的能力。
关于“如何看待数学解题的方法多样性”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!