爱因斯坦和薛定谔等物理学大佬是“实在论”的坚定拥护者。何为“实在论”?
举个例子就明白了,此刻的你坐在办公室里正在工作,忙里偷闲的你打开手机刷到这篇科普文,兴致勃勃地读了起来。
你的状态是非常确定的,就是坐在办公室里,读这篇科普文。你的位置,时间,速度等信息都是确定的,非常实在的。这就是“实在论”。
当然,“实在论”并不仅仅说明事物确实存在,还有很重要的一点,根据事物目前存在的状态,依据一定的物理定律,就可以推测出事物过去呈现的状态,以及未来将会呈现的状态。
比如说天气预报就是最好的例子,我们可以根据气流的走向,速度,云层高度等参数判断未来几天的天气情况。
这一切在我们看来再平常不过了,也非常符合我们的日常生活经验。但这一切在量子世界就戛然而止了。量子世界是一个我们完全看不懂的世界,那里的一切都与我们所在的宏观世界相悖,不管用什么方式,我们永远无法准确得知量子世界的下一刻会发生什么。这与人类的科技是否发达,测量技术是否高超没有任何关系,因为量子世界的一切都是不确定的,不确定性是量子世界的固有属性。
我们只能用概率去描述量子世界的状态,用专业术语描述就是“波函数”,量子世界的事物表现出来的就像波那样不可预测,我们只能描述微观粒子在某个位置出现的概率是多少。
更诡异的是,当我们试图测量微观粒子的状态时,粒子的“波函数”就会发生坍缩,然后我们看到粒子就在某个位置。这并不是说微观粒子的状态是确定的,只是说“观测行为”让粒子的状态“确定”下来了,所有的“确定”也是相对的,微观粒子可以出现在任何地方,甚至同时出现在两个地方,我们的观测只是观测到了粒子在某个时刻出现在了某个地方而已。
说了这么多,你可能会质疑:你说这些与真空也没有什么关系啊?
别着急,我们需要先弄清楚不确定性是量子世界的固有属性,然后子再来看看不确定性意味着什么。
不确定性并不仅仅意味着微观粒子的位置和速度具有不确定性关系,位置和速度不确定性的乘积必须不小于一个常数,这个常数非常小,但是比零要大。
其实能量和时间同样具有这样的不确定性关系,这意味着如果我们把时间不断分割,在极小的时间间隔内,就可能衍生出极大的能量,能量的多少是非常模糊的。但是时间越短,能量极大的可能性就越大。
这意味着绝对的“真空”是不存在的,因为“真空”可以“凭空”衍生出能量,而且时间越短,衍生出极大能量的可能性就越大。这其实就是量子涨落,或者量子起伏。
由于时间和能量的不确定性关系,真空中可以随机衍生出虚粒子对,虚粒子对通常会发生湮灭然后瞬间消失。只要整个过程时间足够短,速度足够快,这个过程就会一直上演。
这意味着,平时看起来“一无所有”的真空,其实非常活跃,甚至比我们的现实世界还活跃,量子涨落让真空表现得就像沸腾的大海一样热闹非凡。
由于能量也意味着物质,所以时间和能量的不确定性关系也意味着:只要时间足够短,任何事情都可以发生,只是发生的概率大小不同而已。
有科学家甚至认为,我们的整个宇宙就是由某个极大的量子涨落产生的。在某个极端的时间里,量子涨落非常大,涨落出极大的能量,囊括整个宇宙的能量,这也就是奇点的由来。
有人可能会提出这样的疑问:涨落出来的奇点不应该瞬间消失吗?
不要用宏观世界的思维去衡量量子世界,上面说了量子世界的核心是不确定性,意味着通过量子涨落衍生出来的能量通常是会湮灭消失的,但某个偶然的机会,能量也存在一定的概率不会消失,或者说在很长一段时间之后才会湮灭消失。
其实量子世界是不存在时间的,这意味着量子世界的某个“短暂瞬间”,就可能等同于现实世界的无限长度的时间!